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Abstract. The leading-order equations governing the flow of a thin viscous film over a moving curved substrate
are derived using lubrication theory. Three possible distinguished limits are identified. In the first, the substrate is
nearly flat and its curvature enters the lubrication equation for the film thickness as a body force. In the second, the
substrate curvature is constant but an order of magnitude larger; this introduces an extra destabilising term to the
equation. In the final regime, the radius of curvature of the substrate is comparable to the lengthscale of the film.
The leading-order evolution equation for the thin film is then hyperbolic, and hence can be solved using the method
of characteristics. The solution can develop finite-time singularities, which are regularised by surface tension over
a short lengthscale. General inner solutions are found for the neighbourhoods of such singularities and matched
with the solution of the outer hyperbolic problem. The theory is applied to two special cases: flow over a torus,
which is the prototype for flow over a general curved tube, and flow on the inside of a flexible axisymmetric tube,
a regime of interest in modelling pulmonary airways.
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1. Introduction

The surface-tension-driven flow of a thin liquid film over a solid substrate is of fundamental
importance in many diverse applications. Examples include industrial coating flows [1, 2], the
levelling of paint films [3] and biological systems such as the flow of the tear film on an eye [4]
or the liquid lining of an airway [5]. Since these films are thin, mathematical models are often
based on the lubrication approximation. This typically results in a single degenerate nonlinear
fourth-order parabolic equation for the film thickness; see the review articles by Oron et al.
[6] and by Myers [7].

In many processes, the substrate to be coated is not flat, and the ability of the fluid to cover
and/or conform to a curved substrate is particularly of interest. Stillwagon and Larson [8]
showed that a small substrate topography may be incorporated as a forcing term, proportional
to the gradient of the substrate curvature, in the standard Landau-Levich equation. Stillwagon
and Larson [9] included a centrifugal body force to model the flow over an uneven substrate
during spin coating. Considering an isolated substrate ‘feature’, they decomposed the flow
into an outer region, where the film is nearly flat and driven solely by centrifugal effects, and
an inner quasi-static region near the feature, where surface tension becomes important. Using
Stillwagon and Larson’s model, Kalliadasis et al. [10] showed that, in steady flow, a capillary
ridge forms upstream of any isolated step-like feature.

All these models are based on the lubrication approximation, essentially assuming that the
slopes of the free surface and of the substrate are small, although this assumption is clearly vio-
lated by the steep substrate features considered. Mazouchi and Homsy [11] analysed the prob-
lem considered in [10] by solving the full Stokes equations numerically, using the boundary-
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integral method. Their numerical results agree well with the lubrication approximation so long
as the capillary number is small. Schwartz and Weidner [12] used curvilinear coordinates
to model the flow of a thin film over an arbitrary one-dimensional curved substrate. Their
governing equation is nevertheless analogous to that of Stillwagon and Larson; we will show
that it is valid only if the substrate curvature is small. They also used a Green’s function
approach to analyse the small-time evolution of an initially uniform film. This approach was
extended in [13] to flow over a two-dimensional substrate with small topography.

Flow on a circular cylinder has been studied, for example, by Bretherton [14] and by
Hammond [15], while gravity (with the cylinder either vertical or horizontal) is incorpo-
rated in [16–19]. The analysis is fairly easily extended to flow on a perturbed circular cylin-
der. Gauglitz and Radke [20], for example, modelled the evolution of a thin film lining a
slowly-varying cylindrical pore, while Jensen [21] considered a thin film inside a slightly bent
cylindrical tube.

We consider the flow of a thin film over an arbitrary moving curved substrate. Our scaling
assumptions are that the film thickness is much smaller than the radius of curvature of the
substrate; that the capillary number, based on the substrate velocity, is small; and that the
Reynolds number is small enough for inertia to be negligible throughout. These assumptions
allow us to use a modified lubrication theory, expressed in a curvilinear coordinate system that
is fixed in the moving substrate.

We identify three distinguished limits. First, if the substrate curvature is small, then we
obtain a modified Landau-Levich equation, forced by the gradient in the substrate curvature,
as in [8]. Second, if the substrate curvature is constant but not small, then the equation acquires
a forcing term proportional to the gradient in the film thickness. This second regime applies to
flow on a circular cylinder, and the extra term alluded to provides the destabilising mechanism
that gives rise to the so-called Rayleigh instability, after [22]. It also applies if the substrate
has nearly constant curvature, as in [20, 21].

The third distinguished limit occurs when the substrate has large, nonuniform curvature,
whose gradient provides a forcing that dominates the leading-order flow. Thus, the film thick-
ness satisfies a hyperbolic equation, whose solution is readily found using the method of
characteristics. Capillarity enters only in quasi-steady inner regions where the hyperbolic
solution becomes singular. This final case has not received much attention in the literature,
and we concentrate on it for most of the paper.

This problem was also analysed, for the case of a stationary substrate, by Roy et al. [23].
Their approach is to include higher-order terms in the expansions to obtain a ‘composite’
model, assumed to be valid throughout the flow domain, that is solved numerically. Instead, we
consider only the leading-order equations, identify the regions where they become invalid, and
analyse the corresponding inner problems using matched asymptotic expansions. This allows
us to identify the different asymptotic regimes outlined above, to obtain general analytical
results concerning the possible formation of capillary shocks and/or puddles and to find the
generic local behaviour near such singularities.

Since the substrate topography is manifested as a body force in the plane of the film,
there is an analogy with other driven thin films. For example, Huppert [24] examined the
gravity-driven flow of a thin layer of liquid down a tilted, flat substrate. The gravitational
forcing results in wave steepening and, eventually, a theoretically discontinuous film thickness
at the advancing contact line. The discontinuity is smoothed out locally by capillarity, as
shown using matched asymptotic expansions by Troian et al. [25], who avoided the difficulty
associated with the advancing contact line by supposing that it is proceeded by a very thin
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precursor layer. A similar approach was adopted by Moriarty et al. [26], who showed that
analogous behaviour arises if the forcing is provided by rotation of the substrate or by blowing
air on the surface.

In Section 2, the leading-order equation for flow over a moving curved surface is derived,
using curvilinear coordinates that are fixed in the substrate. The derivation is simplified by as-
suming that the coordinate axes are lines of curvature of the substrate, as in [27]. However, the
equations, once derived, are cast in an invariant form that is independent of the parametrisation
chosen, so long as the coordinates are fixed in the substrate.

In Section 3, we focus on the case of a rigid substrate, and identify three distinct pa-
rameter regimes, depending on whether the substrate curvature is: (i) small, (ii) large, but
nearly constant, or (iii) large, and not nearly constant. In Section 4 we restrict our attention to
surfaces with only one spatial parameter, an example of which is a two-dimensional substrate
as considered in [12]. We find a general analytical solution for the flow, and show that it
predicts finite-time blow-up and for shock formation. Regularised inner equations that smooth
out such singularities are found and matched with the outer flow. These effects are illustrated
in Section 5 via reference to flow on a torus. Their generalisations for flow on an arbitrary
rigid substrate are discussed in Section 6. In Section 7 we derive the equations for flow over
a moving, axisymmetric surface, a configuration of interest in pulmonary airway reopening
[28].

2. General equations of motion

2.1. GEOMETRY OF THE SUBSTRATE

Consider a moving substrate whose surface is given by

r = rc(x1, x2; t),
where x1 and x2 are spatial parameters and t is time. We define the unit vectors

e1 = 1

a1

∂rc

∂x1
, e2 = 1

a2

∂rc

∂x2
, n = e1 ∧ e2, (1)

where

a1 =
∣∣∣∣∂rc

∂x1

∣∣∣∣ , a2 =
∣∣∣∣∂rc

∂x2

∣∣∣∣ , (2)

and n is the unit normal to the surface. To simplify the derivations we assume that x1 and x2

parametrise lines of curvature of the surface [29, p. 129], so that

∂rc

∂x1
· ∂rc

∂x2
= 0 and

∂2rc

∂x1∂x2
· n = 0.

We note that this parametrisation is singular at isolated umbilic points of the surface, where
a1a2 is equal to zero. The possibility that the coordinate system has an isolated singularity
does not in fact impede the solution of the governing equation (22), so long as one is careful
to discard any spurious singular solutions; an example is given in Section 4.3.

Now consider a thin liquid film flowing over the substrate. We use the coordinates (x1, x2, n)

to describe a point in the liquid whose position is
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r(x1, x2, n; t) = rc(x1, x2; t) + nn(x1, x2; t). (3)

It is readily verified that this coordinate system is orthogonal, with scaling factors∣∣∣∣ ∂r

∂x1

∣∣∣∣ = l1 = a1(1 − κ1n),

∣∣∣∣ ∂r

∂x2

∣∣∣∣ = l2 = a2(1 − κ2n),

∣∣∣∣∂r

∂n

∣∣∣∣ = l3 = 1, (4a,b,c)

where κ1 and κ2 are the principal normal curvatures of the substrate [29, p. 129] in the
directions parameterised by x1 and x2, respectively.

We resolve the velocity of the moving coordinate system onto the x1-, x2- and n-directions:

∂rc

∂t
= v1e1 + v2e2 + v3n, (5)

where the time derivative is taken with x1 and x2 fixed. These velocity components can be
related to the rate of change of the first and second fundamental forms via certain geometric
identities (see [27] for more details), including

a2
∂a1

∂t
= a2

∂v1

∂x1
+ v2

∂a1

∂x2
− a1a2κ1v3, a1

∂a2

∂t
= a1

∂v2

∂x2
+ v1

∂a2

∂x1
− a1a2κ2v3, (6a,b)

∂

∂t
(a1κ1) = ∂

∂x1

(
1

a1

∂v3

∂x1
+ κ1v1

)
+ 1

a2

∂a1

∂x2

(
1

a2

∂v3

∂x2
+ κ2v2

)
, (6c)

∂

∂t
(a2κ2) = ∂

∂x2

(
1

a2

∂v3

∂x2
+ κ2v2

)
+ 1

a1

∂a2

∂x1

(
1

a1

∂v3

∂x1
+ κ1v1

)
. (6d)

2.2. FLUID MECHANICS

We denote the fluid pressure by p, the fluid velocity components by ui , and the velocity of
the fluid relative to the moving coordinate system by ũi , i.e., ui = vi + ũi . We suppose
that the thickness of the liquid layer is h, so that the free surface of the liquid is given by
n = h(x1, x2, t). We assume throughout that inertia can be neglected, so that our governing
equations are the Stokes equations, with appropriate free-surface conditions. The defining
physical parameters for the liquid are therefore its viscosity µ and surface tension σ .

The substrate is assumed to have a typical radius of curvature a, and to vary over a length-
scale L (which may or may not be the same as a) in the x1- and x2-directions. The liquid film
is assumed to be thin so that, if the scaling for h is h̄, then h̄/L = ε 	 1. Finally, U denotes a
typical substrate speed. This motivates the following nondimensionalisation of the equations
and boundary conditions:

vi = Uv′
i , i = 1, 2, 3,

xi = Lx′
i , i = 1, 2; n = εLn′,

ũi = ε2σL

µa
ũ′
i , i = 1, 2; ũ3 = ε3σL

µa
ũ′

3,

κi = 1

a
κ ′
i; p = P1 + σ

a
p′; t = µa

ε2σ
t ′,

(7)



Surface-tension-driven flow on a moving curved surface 287

where P1 is the ambient pressure.
Before nondimensionalising, we deduce an exact flux conservation equation from the

continuity equation, ∇ · u = 0 or, in our coordinate system,

∂

∂x1
(l2u1) + ∂

∂x2
(l1u2) + ∂

∂n
(l1l2u3) = 0, (8)

continuity of normal velo city with the substrate,

ũ3 = 0 on n = 0 (9)

and the kinematic condition on the free surface,

ũ = ∂h

∂t
+ 1

l1

∂h

∂x1

{
ũ1 + h

(
κ1v1 + 1

a1

∂v3

∂x1

)}
+ 1

l2

∂h

∂x2

{
ũ2 + h

(
κ2v2 + 1

a2

∂v3

∂x2

)}

on n = h.

(10)

Integration of (8) with respect to n and application of the two boundary conditions (9) and
(10) results in a single equation, respresenting net conservation of mass. This equation may
be simplified using (6) and thus written in the form

∂M

∂t
+ ∂Q1

∂x1
+ ∂Q2

∂x2
= 0, (11)

where the ‘film density’ M and flux (Q1,Q2) are defined to be

M =
∫ h

0
l1l2dn, (12)

Q1 =
∫ h

0
l2

{
ũ1 + n

(
1

a1

∂v3

∂x1
+ κ1v1

)}
dn, (13a)

Q2 =
∫ h

0
l1

{
ũ2 + n

(
1

a2

∂v3

∂x2
+ κ2v2

)}
dn. (13b)

The Stokes equations, nondimensionalised according to (7), take the form (dropping primes)

∂p

∂n
= O

(
ε2, εCa

a

L

)
, (14)

1

a1

∂p

∂x1
= ∂2ũ1

∂n2
+ O

(
ε2,

εL

a
,Ca

a

L

)
, (15a)

1

a2

∂p

∂x2
= ∂2ũ2

∂n2
+ O

(
ε2,

εL

a
,Ca

a

L

)
, (15b)

where Ca = µU/σ is the capillary number. For the moment, ε and Ca are taken as independent
small parameters but, in Section 7, we relate them for a regime of interest in pulmonary airway
reopening.

For simplicity, in the analysis to follow we take the coordinate system to be fixed in the
moving substrate, so that the no-slip condition reads
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ũ1 = ũ2 = 0 on n = 0. (16)

This assumption restricts the substrate motions to ones that preserve its principle directions;
in the Appendix we show that this restriction is, in fact, unnecessary.

The balance between normal stress and surface tension on the free surface gives

p = −K + O
(
ε2, εCa

a

L

)
on n = h, (17)

where K is twice the mean curvature (i.e., the sum of the principal curvatures) of the free
surface. The general expression for K is extremely complicated, but it may be expanded for
small ε to give

K ∼ κ1 + κ2 + εa

L
∇2

s h + εL

a

(
κ2

1 + κ2
2

)
h + O(ε2), (18)

where ∇2
s is the surface Laplacian with respect to the substrate:

∇2
s h = 1

a1a2

{
∂

∂x1

(
a2

a1

∂h

∂x1

)
+ ∂

∂x2

(
a1

a2

∂h

∂x2

)}
.

The tangential stress balance may be written as

∂ũ1

∂n
+ Ca

ε

a

L

1

a1

∂v3

∂x1
+ Ca

ε
κ1v1 = O

(
ε2,

εL

a
,Ca

a

L

)
, (19a)

∂ũ2

∂n
+ Ca

ε

a

L

1

a2

∂v3

∂x2
+ Ca

ε
κ2v2 = O

(
ε2,

εL

a
,Ca

a

L

)
, (19b)

on n = h. More details of the equations and boundary conditions in this coordinate system
can be found in [27]. From (14) and (17), we find

p = −K(x1, x2, t) + O
(
ε2, εCa

a

L

)
. (20)

Moreover, solving (15) for ũ1 and ũ2, using the boundary conditions (16) and (19), we obtain
asymptotic expressions for the flux components (made dimensionless with ε3σL2/µa):

Q1 = −h3

3

a2

a1

∂p

∂x1
+ O

(
ε2,

εL

a
,Ca

a

L

)
, (21a)

Q2 = −h3

3

a1

a2

∂p

∂x2
+ O

(
ε2,

εL

a
,Ca

a

L

)
. (21b)

The governing equation (11) for the film thickness h therefore reads, to leading order,

1

a1a2

∂

∂t
(a1a2h) + ∇s ·

(
h3

3
∇sK

)
= O

(
ε2,

εL

a
,Ca

a

L

)
, (22)

where ∇s is the surface gradient operator (again, with respect to the substrate):

∇sK = ∂K

∂x1

e1

a1
+ ∂K

∂x2

e2

a2
, ∇s · (q1e1 + q2e2) = 1

a1a1

{
∂

∂x1
(a2q1) + ∂

∂x2
(a1q2)

}
.
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Notice that, if the asymptotically small terms in Equation (1) of [23] are neglected, it reduces
to (22).

3. Rigid substrate

3.1. SMALL CURVATURE

Here we consider the case in which the substrate is both rigid and relatively flat, so that the
curvature of the substrate is of the same order as the curvature of the thin film. The appropriate
scaling choice is L/a = ε and, in this regime, plane Cartesian coordinates can be used to
describe the surface, at least locally. The resulting equation is

∂h

∂t
+ ∇ ·

(
h3

3
∇(κ + ∇2h)

)
= O(ε2), (23)

where κ = κ1 + κ2 is twice the mean substrate curvature. If κ = 0, Equation (23) reduces
to the classical lubrication equation for surface-tension-driven flow on a plane [7]. The two-
dimensional restriction of (23) was derived in [8] and used in [12] to model paint flow over a
surface with piecewise constant curvature. However, in cases where the curvature is not small,
even if it is constant, Equation (23) is not asymptotically valid, as we will see in the next
Section.

3.2. CONSTANT (OR NEARLY CONSTANT) CURVATURE

If the substrate has constant mean curvature (for example if it is a circular cylinder), then the
nondimensionalisation ansatz (7) has to be modified slightly. In this case we use the (constant)
mean curvature curvature 1/a to define our lengthscale: L = a. The free-surface curvature,
nondimensionalised with 1/a, is then found to be

K ∼ 1 + ε
{(

κ2
1 + κ2

2

)
h + ∇2

s h
}+ O(ε2). (24)

Now, since the flow is driven by the gradient of K , the constant leading-order term in (24)
is irrelevant. Effectively, the uniform capillary pressure associated with the substrate curvature
may be absorbed into the ambient pressure P1. The upshot is that an extra factor of ε must be
included in the scaling for t , which becomes

t = µa

εσ
t ′, (25)

and the leading-order equation for h then reads

∂h

∂t
+ ∇s ·

{
h3

3
∇s

[(
κ2

1 + κ2
2

)
h + ∇sh

]} = 0. (26)

The first term in square brackets is always destabilising: for flow on a circular cylinder it gives
rise to the so-called Rayleigh instability. This important effect was omitted in [12].

The revised scaling (25) for t also applies if the substrate mean curvature is nearly constant.
If the substrate principal curvatures, nondimensionalised with 1/a, take the form

κ1 ∼ κ
(0)
1 + εκ

(1)
1 + O(ε2), κ2 ∼ κ

(0)
2 + εκ

(1)
2 + O(ε2), (27)

where κ
(0)
1 + κ

(0)
2 = 1, then (22) becomes
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∂h

∂t
+ ∇s ·

{
h3

3
∇s

[
κ
(1)
1 + κ

(1)
2 +

(
(κ

(0)
1 )2 + (κ

(0)
2 )2

)
h + ∇2

s h
]}

= 0. (28)

This is just a modification of (26) to include the forcing due to the perturbation in the substrate
curvature.

Consider, for example, a perturbed circular cylinder, with

rc =




(1 + εr(z, θ)) cos θ

(1 + εr(z, θ)) sin θ

z


 , (29)

where z and θ are cylindrical polar coordinates. The substrate curvatures in the z- and θ-
directions are given approximately by

κz ∼ ±εr ± ε
∂2r

∂z2
, κθ ∼ 1 ± ε

∂2r

∂θ2
,

where +(−) corresponds to flow outside(inside) the cylinder. Substitution of these in (28)
gives the governing equation for the flow of a thin film on this substrate as

∂h

∂t
+ ∇ ·

(
h3

3
∇ (∇2(h ± r) + (h ± r)

)) = 0, (30)

where the gradient operator is ∇ = (∂/∂z, ∂/∂θ)T . An axisymmetric version of (30) was
used in [20] to model thin film flow in a constricted pore. The case r ≡ 0 was considered by
Hammond [15], who examined the nonlinear evolution of the Rayleigh instability. Another
example of a perturbed cylinder, namely a slightly bent circular cylinder, was studied by
Jensen [21]. His governing equation is also a special case of (28).

3.3. LARGE CURVATURE

Now we consider the scaling L = a, so that the free-surface curvature is, to leading order,
equal to the substrate curvature. The governing equation (22) takes the form, valid up to O(ε),

∂h

∂t
+ ∇s ·

(
h3

3
∇sκ

)
= 0, (31)

where the substrate curvature, κ = κ1 + κ2, is a given function of x1 and x2. The hyperbolic
equation (31) for h can be solved with relative ease once the substrate geometry is given. It
clearly predicts migration of fluid up the curvature gradient, accompanied by wave-steepening
and the possibility of shock formation. It is degenerate at points where κ is stationary: at
such points h either tends to zero like t−1/2 or blows up in finite time, depending on whether
the surface-Laplacian of κ , is positive or negative. Both this blow-up and shock formation
are smoothed out in practice by higher-order corrections to the free-surface curvature which
involve spatial derivatives of h and so regularise (31). In Section 4, we illustrate all these for
a substrate dependent on just one spatial parameter.

3.4. SUMMARY

We have identified three distinct scaling regimes:



Surface-tension-driven flow on a moving curved surface 291

L

a
	
√

h̄

a
	 1 ⇒ substrate curvature is negligible, (32a)

L

a
∼
√

h̄

a
	 1 ⇒ substrate curvature ∼ film curvature, (32b)

√
h̄

a
	 L

a
� 1 ⇒ substrate curvature dominates. (32c)

(In each case we also require h̄/L = ε 	 1.) Of these, the first two have been considered
fairly widely. We concentrate on the third, which has not, for the remainder of the paper.

4. One-spatial-parameter thin-film flow

4.1. SOLUTION OF THE HYPERBOLIC EQUATION

We now consider the special case in which the spatial dependence of the curved substrate and
the thin film flowing over it can both be described by just one variable. Therefore we neglect
all x2-derivatives and put x1 ≡ x. From (22) the resulting equation of motion for the film is

a1a2
∂h

∂t
+ ∂

∂x

(
qh3

3

)
= 0, where q = a2

a1

∂κ

∂x
(33)

and κ is the substrate mean curvature, so that a1, a2 and q are all given functions of x.
The general solution of (33) can readily be found using the method of characteristics. If

the initial film profile is h0(x), then for subsequent time it is

h = h0(s)
q(s)1/3

q(x)1/3
, (34)

where the equations of the characteristic projections x = x(s, t), are given by∫ x

s

a1(ξ)a2(ξ)dξ

q(s)2/3q(ξ)1/3
= th0(s)

2. (35)

The location and type of singularities that the solution develops depend on the form of the
function q and the initial film profile h0. However, we can make the general statement that
for sufficiently smooth q and nonzero h0, (33) does not admit solutions in which h → 0 in
finite time. To fix ideas, for the remainder of this section we suppose that the film is uniform
initially: h0 ≡ 1.

The solution for h breaks down on the envelope of the characteristic projections. This is
obtained by differentiating (35) with respect to s and solving the resulting equation simulta-
neously with (35), and the resulting envelope may be written as

t = ts(s) = −3a1(s)a2(s)

2q ′(s)
. (36)

Suppose the solution breaks down first at t = tc, s = sc, i.e., the minimum of ts occurs at
s = sc:
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ts(sc) = tc, t ′s(sc) = 0, t ′′s (sc) = α2, say. (37)

We examine two possible types of breakdown separately. First, if q(sc) �= 0, then the in-
tersection of the characteristic projections signals the formation of a shock, as is usual in
such nonlinear hyperbolic equations. We examine this case in Section 4.2. If it happens that
q(sc) = 0, so that the curvature is stationary, then Equation (33) is locally degenerate and a
different kind of singularity occurs, corresponding to the formation of a local puddle of liquid.
This behaviour is considered in Section 4.3.

4.2. LOCAL SOLUTION NEAR A SHOCK

Suppose the outer solution has a shock at x = X(t). We perform a local rescaling,

x = X(t) + ε1/3ξ, (38)

which introduces a correction to the free-surface curvature and results in the following inner
equation in the neighbourhood of the shock:

∂

∂ξ

{
h3

3

(
q(X)

a1(X)a2(X)
+ 1

a1(X)4

∂3h

∂ξ 3

)
− Ẋh

}
= O(ε1/3). (39)

Note that, over this new lengthscale, the film is in the regime identified in Section 3.1. Thus,
(39) can be obtained either by scaling (22) appropriately or from (23).

By integrating (39) with respect to ξ , we have, to leading order,

h3

3

(
q

a1a2
+ 1

a4
1

∂3h

∂ξ 3

)
− Ẋh = f (t), (40)

where f is arbitrary and, here and henceforth, the argument X is assumed. The boundary
conditions for (40) are

h → h± as ξ → ±∞, (41)

where h± are the values of h that the outer solution sees at x = X±. Hence

Ẋ = q

3a1a2

(
h2 + h+h− + h2

−
)
, (42)

which is the Rankine-Hugoniot relation for the conservation law (33), and

f = − q

3a1a2
h+h−(h+ + h−). (43)

Moreover (40) can be integrated once, giving

3f

2

[
1

h2

]+

−
+ 3Ẋ

[
1

h

]+

−
+ q

a1a2
[h]+− = 1

a4
1

∫ ∞

−∞
(h′′)2 dξ, (44)

which simplifies to

q

2a1a2

(h+ − h−)3

h+h−
= − 1

a4
1

∫ ∞

−∞
(h′′)2 dξ < 0, (45)

so that (h+ − h−) must take the opposite sign to q.
Recall that the characteristic speed is



Surface-tension-driven flow on a moving curved surface 293

uc = ∂

∂t
(x(s, t)) = qh2

a1a2
, (46)

and hence

Ẋ − uc =




(h− − h+)(h− + 2h+)
q

3a1a2
, x > X,

(h+ − h−)(2h− + h+)
q

3a1a2
, x < X.

(47)

Since, as noted above, (h+ − h−)q < 0, we deduce that the characteristics of the hyperbolic
problem travel into the shock on either side (as a causality argument would also have pre-
dicted). The leading-order outer solution following shock formation may, therefore, be found
by solving the hyperbolic equation on either side and moving the shock according to the
Rankine-Hugoniot relation (42). Also, we can deduce that (i) the shock moves in the same
direction as the local flux and, hence, (ii) the film thickness behind the shock is greater than
that ahead.

To track the position of the shock it is useful to know the values of s corresponding to
either side of the shock. By differentiating the characteristic equation (35) with respect to t

and substituting for Ẋ from (42), we obtain ordinary differential equations for these values:

[3a1(s+)a2(s+) + 2tq ′(s+)]ṡ+ = q(s+)1/3
(
q(s−)1/3 − q(s+)1/3

) (
q(s−)1/3 + 2q(s+)1/3

)
,

(48a)

[3a1(s−)a2(s−) + 2tq ′(s−)]ṡ− = q(s−)1/3
(
q(s+)1/3 − q(s−)1/3

) (
q(s+)1/3 + 2q(s−)1/3

)
.

(48b)

Initial conditions are found by expanding about s = sc, t = tc. The result is

s± ∼ sc ±
√

6(t − tc)

α
as t ↘ tc. (49)

We give an example, in which (48) and (49) are used to track the propagation of a shock,
below in Section 5.

The leading-order inner solution for h can be written in the form

h = h+ + h−
2

+ h+ − h−
2

H(ζ ;β), (50)

where

ζ =
( −2q

a2(h+ − h−)

)1/3

a1ξ, β = h+ + h−
h+ − h−

, (51)

and H satisfies the canonical problem

Hζζζ = −(1 + H)(1 − H)(3β + H)

(β + H)3
, H → ±1 as ζ → ±∞. (52)

We have assumed implicitly that (52) has a solution. Although we have not established this
rigorously, by linearising about H = ±1, it is straight forward to show that there is a one-
parameter family of solutions satisfying each of H → ±1 as ζ → ±∞. Hence, one can
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Figure 1. Solutions of the boundary-value problem (52) for β = 2, 4, 8, 16; the wave gets longer as β increases.
The arbitrary translation is chosen such that they all pass through the origin.

shoot from (for example) ζ = −∞ and adjust the free parameter until the required behaviour
at ζ = +∞ is obtained. Typical shock profiles resulting from this procedure are shown in
Figure 1. They exhibit capillary waves both up- and downstream of the shock.

It is not immediately clear from (50) and (52) that h remains positive for all β. Note that h
reaches zero at a finite value of ξ if H reaches −β, so that the denominator of (52) becomes
infinite. Although we have not established this rigorously, it appears that (52) does not admit
such solutions.

The boundary-value problem (52) is equivalent to the quasi-steady problem studied by
Troian et al. [25] near an advancing contact line, although they were particularly concerned
with the case where the ‘precursor’ film ahead of the propagating front is very thin, i.e., with
the limit β → 1.

4.3. LOCAL SOLUTION NEAR A CRITICAL LINE

Now consider the flow in the neighbourhood of a value of x (without loss of generality x = 0)
at which q = 0. Note that a fixed value of x in this two-dimensional analysis corresponds in
general to a line on a three-dimensional substrate. The exception occurs if a2(0) = 0, in which
case x = 0 labels a point, not a line. This is illustrated by the ellipsoid of revolution

rc =




a sin θ cos φ

a sin θ sin φ

b cos θ


 .

If a > b, the ellipsoid is oblate. For flow on the outside of such an ellipsoid, κ is maximum
at θ = 0 and minimum at θ = π/2. These are reversed if the flow is on the inside rather than
the outside or if the ellipsoid is prolate: a < b. Now note that aφ = a sin θ is zero at θ = 0,
which labels a point (this is an umbilic point of the surface), while θ = π/2 labels a line.

For the remainder of this section we assume a2(0) �= 0, so that x = 0 labels a line; point
maxima of κ are considered in Section 6.3. We begin by analysing the singular behaviour
predicted by the hyperbolic equation (22) in the neighbourhood of x = 0, before performing
an appropriate rescaling to recover the higher spatial derivatives that regularise the problem
locally.

Suppose that q has the generic local behaviour
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q ∼ −a1(0)a2(0)λx + O(x3) as x → 0, (53)

where λ > 0 so that x = 0 is a local maximum of the mean curvature and, for simplicity,
the substrate is assumed to be symmetric about x = 0, so that the coefficient of x2 is zero.
The following analysis may readily be extended to account for more general local substrate
geometry. By substituting x = 0 in (33), we find that the thickness at the origin satisfies the
ordinary differential equation

∂h

∂t
(0, t) = λ

3
h(0, t)3

and, therefore, blows up in finite time, namely

tc = 3

2λ
.

This is, of course, the same time as given in (36) by looking for crossing of the characteristic
projections. Moreover, the assumption of substrate symmetry implies that x = 0 is a local
minimum of the characteristic envelope.

Near blow-up, the local behaviour of the outer solution for h is described by a similarity
solution of

∂h

∂t
= λ

3

∂

∂x
(xh3), (55)

which takes the form

x = C
√

3 + 2λ(t − tc)h2

h4
, (56)

where C is an arbitrary constant. For t < tc, h is smooth at x = 0, with

h ∼
√

3

2λ(tc − t)

{
1 − 27x2

32C2λ4(tc − t)4
+ · · ·

}
as x → 0. (57)

For fixed x > 0, h approaches the following singular behaviour at blow-up:

h ∼ 31/8C1/4

x1/4

{
1 +

√
Cλ(t − tc)

4 × 33/4
√
x

+ · · ·
}

as t → tc. (58)

Finally, for t > tc, the behaviour of h near the origin is

h ∼ C1/3(2λ(t − tc))
1/6

x1/3

{
1 + x2/3

2C2/3(2λ(t − tc))4/3
+ · · ·

}
(59)

as x → 0.
Blow-up first occurs at t = tc, when the characteristic projections with s > 0 start to

cross x = 0. We label the characteristic projection that crosses x = 0 at time t by s = s0(t).
According to (35), S0 satisfies∫ s0

0

a1(ξ)a2(ξ) dξ

q(ξ)1/3
= −2q(s0)

2/3,

which may be differentiated with respect to t to obtain the following ordinary differential
equation for s0(t):
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(ts(s0) − t)ṡ0 = 3q(s0)

2q ′(s0)
. (60)

Recall that ts(s) is the characteristic envelope defined by (36); here sc = 0 and t ′′s (0) = α2.
The initial condition for (60) is found by expanding ts(s0) about s0 = 0, which gives

s0 ∼ 2

α

√
2(t − tc) as t ↘ tc. (61)

The inner behaviour of the outer solution for h is

h = q(s0)
1/3

q(x)1/3
∼ − q(s0)

1/3

[a1(0)a2(0)λ]1/3x1/3

(
1 + O(x2)

)
(62)

as x → 0, t > tc. Substitution of (61) in (62) gives the following local behaviour as x → 0,
t ↘ tc,

h ∼ −
√

2(t − tc)
1/6

α1/3x1/3

(
1 + O(x2)

)
,

and comparison with (59) allows us to identify the constant C:

C = 2

α
√
λ
. (63)

Now, the blow-up predicted by the hyperbolic equation (33) must be smoothed out in some
inner region where (33) is regularised by higher spatial derivatives of h. As in Section 4.2, the
correct lengthscale is chosen by ensuring that the substrate and free-surface curvature terms
balance in (22), resulting in

h = ε−1/5H, x = ε1/5ξ, q = ε1/5q̃, (64)

where

q̃ ∼ −λξ + O(ε2/5). (65)

The inner equation for H is therefore

a1(0)a2(0)ε
2/5 ∂H

∂t
+ ∂

∂ξ

(
H 3

3

([a2(0)a1(0)
−3O(ε1/5)]Hξξξ − λξ

)) = O(ε3/5). (66)

Matching with the outer solution requires

H ∼ −q(s0)
1/3

λ1/3ξ 1/3
ε2/15 as ξ → ∞ (67)

while, assuming symmetry about the origin, we have Hξ(0) = Hξξξ (0) = 0. Hence, setting
H = Hξ = 0 at ξ = l to leading order,

H = λa1(0)3

24a2(0)
(ξ 2 − l2) ξ < l. (68)

The capillary static solution (68), which corresponds to a ‘puddle’ of liquid accumulated
at the origin, cannot be matched directly with (67). Instead there must be a transition region
between the two in the neighbourhood of ξ = l. As in many such problems where a thin layer
of fluid flows into a static meniscus (cf. [30]) the matching of the free surface is nontrivial,
requiring a formally infinite number of intermediate regions. Without doing so in detail, we
can obtain an evolution equation for l by matching with the flux from the outer solution,
whence
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Figure 2. Schematic picture of a capillary static puddle. Figure 3. Local film profile H̄ vs. ξ̄ , found by solving
(71), for ε̄ = 10−3, 10−6, 10−9.

Figure 4. Definition sketch for a torus. Figure 5. Characteristic projections for flow outside a
torus with radius ratio b = 2.

d

dt

(
λl5a1(0)4

45

)
= −q(s0)

3
(69)

where the bracketed term is the volume of liquid per unit length in the x2-direction (nondi-
mensionalised with εa2) that has accumulated at the critical line. The implication is that the
fluid all ends up in a region of length ε1/5a and thickness ε4/5a, as illustrated in Figure 2.

The local film profile may be visualised by solving the uniformly-valid quasi-static prob-
lem

H 3

(
a2

a3
1

Hξξξ − λξ

)
= −ε2/5q, (70a)

H(0) = λa3
1 l

4

24a2
, Hξ (0) = 0, H ∼ −ε2/15q1/3

λ1/3ξ 1/3
as ξ → ∞, (70b)

where the arguments 0 for ai and s0 for q have been dropped for ease of notation. This may
be reduced to the canonical problem

H̄ 3
(
H̄ξ̄ ξ̄ ξ̄ − ξ̄

) = ε̄2/5, (71a)

H̄ (0) = 1, H̄ξ̄ (0) = 0, H̄ ∼ ε̄2/15

ξ̄ 1/3
as ξ̄ → ∞, (71b)
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where

H = λa3
1l

4

24a2
H̄ , ξ = l

241/4
ξ̄ , ε̄ = 2465/8ε

(
−a9

1λ
4l13

a3
2q

)5/2

. (72)

We illustrate some solutions of (71), for various values of ε̄, in Figure 3. We see that the static
meniscus in each case has a minimum value close to ξ̄ = 241/4 ≈ 2·213, which tends to zero
as ε̄ → 0. Only one capillary ridge is discernible between the puddle and the outer flow. These
ridges correspond to the intermediate asymptotic regions alluded to previously; in general, the
number of such regions increases as ε̄ decreases, varying like log(− log ε̄)/ log 10.1 Thus ε̄

has to be unphysically small before more than one is observed.

5. Example – flow on a torus

We illustrate the theory of Section 4 by analysing the flow of a thin film on the torus

rc =




(b + cos θ) cos φ

(b + cos θ) sin φ

sin θ


 , (73)

where b > 1 is the ratio of the radii and θ ≡ x, as illustrated in Figure 4. Flow on a torus was
also considered by Roy et al. [23]. The metric coefficients are

aθ = 1, aφ = b + cos θ, (74)

and the substrate curvature is

κ = ±b + 2 cos θ

b + cos θ
, (75)

where +(−) corresponds to flow inside(outside) the torus. Hence

q = ∓ b sin θ

b + cos θ
, (76)

and the time to shock formation is

ts = ± 3(b + cos s)3

2b(1 + b cos s)
(77)

where, as before, s is the characteristic coordinate.
For flow on the outside of a torus, i.e., a negative sign in (77), the minimum value of ts

always occurs at s = π , where κ is maximum. Hence blow-up occurs at θ = π at time
tc = 3(b − 1)2/2b. The characteristic projections and film profile for such a flow with b = 2
(so that tc = 3/4) are shown in Figures 5 and 6.

For flow inside a torus, i.e., a positive sign in (77), the character of the solution depends
on the size of b. For b > 3, the minimum of ts occurs at s = 0, so that blow-up occurs at
θ = 0, tc = 3(1 + b)2/2b. For b < 3, however, the first singularity to develop is a shock on
the characteristic s = sc = cos−1((b2 − 3)/2b) at time ts = 81(b2 − 1)2/8b4. The time ts to
formation of a singularity and corresponding characteristic coordinate sc are plotted against b
in Figure 7.



Surface-tension-driven flow on a moving curved surface 299

Figure 6. Solution for h on outside of torus with radius
ratio b = 2.

Figure 7. Time ts to singularity formation, and corre-
sponding characteristic coordinate sc vs. radius ratio b

for flow inside a torus.

Figure 8. Characteristic projections for flow inside a
torus with radius ratio b = 4.

Figure 9. Solution for h on the inside of a torus with
radius ratio b = 4.

Figure 10. Characteristic projections for flow inside a
torus with radius ratio b = 2.

Figure 11. Detail from Figure 10, showing characteris-
tics crossing.

The former of these two cases is illustrated in Figures 8 and 9, where characteristic projec-
tions and the film profile are shown for b = 4 (so tc = 75/8). The characteristic projections
for the case b = 2 (so ts = 729/128, sc = cos−1(1/4), corresponding to θ ≈ 0·043) are shown
in Figure 10. In the detail shown in Figure 11, it is clearly seen that characteristics begin to
cross before they reach the critical point θ = 0.
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Figure 12. Solution for h on the inside of a torus with
radius ratio b = 2.

Figure 13. Detail from Figure 12 at t = tc =
729/128 ≈ 5·7, showing shock.

Figure 14. Solution for h on the inside of a torus with ratio b = 2, showing shock propagation.

That this signifies the formation of a shock is seen in the film profile shown in Figure 12, and
the detail thereof in Figure 13.

To continue the solution further, we have to use (48) and (49) to move the shock, while
solving the hyperbolic problem on either side. Thus, as shown in Figure 14, we can track the
shock as it propagates round the torus.

6. Generalisation to arbitrary substrate geometry

6.1. HYPERBOLIC PROBLEM

Here we briefly describe the generalisation of the theory of Section 4 to flow over an arbitrary
curved substrate. The general governing equation (22) may be written in the form

a1a2
∂h

∂t
+ ∂

∂x1

(
q1h

3

3

)
+ ∂

∂x2

(
q2h

3

3

)
= 0, (78a)

where

q1 = a2

a1

∂κ

∂x1
, q2 = a1

a2

∂κ

∂x2
. (78b)

Since q1(x1, x2) and q2(x1, x2) are both a priori known functions, the problem for the stream-
lines xi = Zi(τ), namely
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Ż1 = q1(Z1, Z2)

a1(Z1, Z2)a2(Z1, Z2)
, Ż2 = q2(Z1, Z2)

a1(Z1, Z2)a2(Z1, Z2)
, (79)

is a phase-plane problem which need only be solved once. The critical points of (79) are
stagnation points of the flow, at which puddles of fluid will form if κ is a local maximum, as
in Section 4.3.

The solution for h can be expressed in terms of the solution of the related steady hyperbolic
problem for 3(x1, x2) (which also need only be solved once)

∂

∂x1
(q13) + ∂

∂x2
(q23) = 0. (80)

It is then simple to show from (78) that h/31/3 is constant along streamlines. Therefore

h(Z1(τ ), Z2(τ ))

3(Z1(τ ), Z2(τ ))1/3
= h0(Z1(τ0), Z2(τ0))

3(Z1(τ0), Z2(τ0))1/3
, (81)

where h = h0(x1, x2) at t = 0 and the material point that is currently at position τ along a
streamline started at position τ0. Hence τ and τ0 are related in the following time-dependent
way:∫ τ

τ0

dτ̃

3(Z1(τ̃ ), Z2(τ̃ ))
2/3

= h0(Z1(τ0), Z2(τ0))
2

3(Z1(τ0), Z2(τ0))
2/3

t. (82)

In (81) and (82), the streamline along which τ varies is just a parameter. On each particular
streamline, the time to shock formation is found by differentiating (82) with respect to τ0:

ts(τ0) =
[
− 3a1a2h0

2((q1h
3
0)x1 + (q2h

3
0)x2)

]
(Z1(τ0),Z2(τ0))

. (83)

The material point that first forms a shock is found by minimising (83) as a function of Z1 and
Z2.

6.2. SHOCK PROPAGATION

Now we generalise the theory of Section 4.2 to describe the propagation of a shock over
an arbitrary surface. Suppose that the shock is parametrised by xi = Xi(s, t), where s is
arc-length along the shock. We use the local coordinates

x1 = X1 + ε1/3n̂ sin θ, x2 = X2 − ε1/3n̂ cos θ, (84)

where

∂X1

∂s
= cos θ,

∂X2

∂s
= sin θ.

Define the velocity components of the shock

Vs = ∂X1

∂t
cos θ + ∂X2

∂t
sin θ, Vn = ∂X1

∂t
sin θ − ∂X2

∂t
cos θ, (85a,b)

which are therefore related by

∂Vs

∂s
+ ∂θ

∂s
Vn = 0,

∂Vn

∂s
− ∂θ

∂s
Vs = −∂θ

∂t
. (86)
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Transforming the governing equation (22) into the new coordinate system, the leading-order
equation is found to be

h3

3

(
A(s, t)

∂3h

∂n̂3
+ B(s, t)

)
− Vnh = f (s, t), (87)

where

A =
(

cos2 θ

a2
2

+ sin2 θ

a2
1

)2

, B = sin θ

a2
1

∂κ

∂x1
− cos θ

a2
2

∂κ

∂x2
. (88)

Matching with the outer solution on either side of the shock,

h → h± as n̂ → ±∞,

gives

f = −B

3
h+h−(h+ + h−),

and the normal velocity

Vn = B

3
(h2

+ + H+h− + h2
−). (89)

The analysis of Section 4.2 can now be followed closely. By integrating (87) once, we
deduce that (h+ − h−) must take the opposite sign to B. The characteristic velocity is given
by

uc =
(

Ż1

Ż2

)
= h2

a2
1a

2
2

(
a2

2κx1

a2
1κx2

)
,

and hence the component of the characteristic velocity across the shock on either side is

[uc · n̂]± = h2
±B. (90)

This leads to the result, analogous to (47), that the characteristics flow into the shock on either
side:

[uc · n̂]+ < Vn < [uc · n̂]−. (91)

The regularised solution for h in the neighbourhood of the shock can be written in terms
of the solution H of the canonical problem (52):

h = h+ + h−
2

+ h+ − h−
2

H(ν;β), where β = h+ + h−
h+ − h−

, (92)

and

ν =
( −2B

A(h+ − h−)

)1/3

n̂. (93)

In practice, once the hyperbolic problem has been solved on either side of the shock, the
evolution of its position is determined by (86), where Vn is given by (89), and B by (88).

6.3. LOCAL SOLUTION NEAR A CRITICAL POINT

Consider a critical point (without loss of generality taken to be the origin) at which κ is
stationary. Hence we can write κ in the form



Surface-tension-driven flow on a moving curved surface 303

κ ∼ constant. −
2∑

i,j=1

Kij ai(0)aj (0)xixj + · · · . (94)

An inner solution is sought via the scalings

h = ε−1/3H, ai(0)xi = ε1/6
2∑

j=1

Pij ξj , (95)

where Pij is a rotation tensor that diagonalises Kij :

P T KP =
(

:1 0

0 :2

)
. (96)

The leading-order inner problem for H reads

∂2H

∂ξ 2
1

+ ∂2H

∂ξ 2
2

= :1ξ
2
1 + :2ξ

2
2 − C, (ξ1, ξ2) ∈ D, (97)

where D is the region occupied by the puddle and C is an arbitrary constant (the scaled
pressure drop across the quasi-static meniscus). As in Section 4.3, detailed matching with the
outer solution is problematic but, to leading order, it is sufficient to impose that both H and
its normal derivative be zero on the boundary of the puddle, that is

H = ∂H

∂ξ1
= ∂H

∂ξ2
= 0 on ∂D . (98)

The problem (97, 98) is similar to the classical contact problem between a membrane and
a plane under an applied pressure. By inspection we seek a solution of the form

H = (aξ 2
1 + bξ 2

2 − c)2. (99)

On substituting this in (97), a, b and c are found to satisfy

12a2 + 4ab = :1, 12b2 + 4ab = :2, 4(a + b)c = C. (100)

The condition for a and b to be real is

:1(17 − 12
√

2):2 > 0 and :2 + (17 − 12
√

2):1 > 0, (101)

that is, there are only small sectors of (:1,:2) parameter-space in which a and b are real
while :1 and :2 take different signs.

For D to be a bounded region we require a and b to take the same sign (without loss of
generality +), and this can occur if and only if :1 and :2 are both positive, i.e., if the origin
is a true maximum of κ . The appropriate solutions of (100) are

a =

√
:2 + 17:1 −

√
:2

1 + 34:1:2 + :2
2

8
√

3
, (102a)

b =

√
:1 + 17:2 −

√
:2

1 + 34:1:2 + :2
2

8
√

3
. (102b)
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In terms of these, the volume of liquid in the puddle (nondimensionalised with εL3) is

V =
∫ ∫

D

H dξ1dξ2 = π

192

C3

√
ab(a + b)3

. (103)

As in (69), we can equate the rate of change of V to the flux of liquid into the origin predicted
by the outer problem:

dV

dt
=
∮
∂D

h3

3
(q2 dx1 − q1 dx2), (104)

where ∂D is a circuit of the origin which, in the outer region, is shrunk down to zero length.

7. Travelling-wave theory in an axisymmetric geometry

Now we apply the general theory derived in Section 2 to the case in which the substrate is
axisymmetric. Put

rc =




R(z, t) cos θ

R(z, t) sin θ

z


 . (105)

Then it is readily found that

az =
√

1 + R2
z , aθ = R, κz = − Rzz

(1 + R2
z )

3/2
, κθ = 1

R
√

1 + R2
z

. (106)

For the substrate velocity, we follow [5] and make the simplifying assumption of purely radial
motion, so that

v =




Rt cos θ

Rt sin θ

0


 . (107)

This means that the coordinate system (z, θ) is fixed in the substrate, as required by the theory.
We seek solutions in which the film is axisymmetric as well as the substrate, so that (22)

reduces to

∂

∂t

(
R

√
1 + R2

zh

)
+ ∂

∂z

(
h3

3

R√
1 + R2

z

∂K

∂z

)
= 0. (108)

This is the general equation for thin-film flow on a moving axisymmetric substrate. It may
admit further simplification if there is a disparity between the timescale for motion of the
substrate and the timescale for surface tension levelling. We illustrate this by considering a
travelling-wave solution of (108), i.e., a solution that is steady in a frame moving with speed
U in the z-direction, so that, in dimensionless terms,

∂

∂t
= −Ca

ε2

a

L

∂

∂z
. (109)

Then (108) can be integrated once to give
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R√
1 + R2

z

h3

3
Kz − Ca

ε2

a

L
Rh

√
1 + R2

z = constant. (110)

This governing equation is used in [28] to model the liquid lining of pulmonary airways.
From (110) we can identify three more scaling regimes to go with (32):

ε2L

a
	 Ca 	 1 ⇒ surface tension levelling is negligible,

ε2L

a
∼ Ca 	 1 ⇒ surface tension levelling ∼ substrate motion,

Ca 	 ε2L

a
	 1 ⇒ substrate motion is negligible.

These three regimes apply quite generally to flow on moving surfaces. The second case is
particularly of interest for the film left behind a liquid bridge propagating along an elastic
tube – the configuration considered in [28] – in which, as in [14], L/a = O(Ca1/3) and
ε = O(Ca1/3).

8. Conclusions

We have used systematic asymptotic expansions to derive the general leading-order equations
governing the flow of a thin liquid film over a moving, curved substrate. We have identified
the parameter regimes in which the various effects of substrate curvature, substrate motion
and film curvature are or are not important. For relatively small substrate curvature, the film
profile satisfies a fourth-order, nonlinear parabolic equation. For larger substrate curvature, the
governing equation is hyperbolic, with the curvature of the film itself only becoming important
in the neighbourhood of certain points or lines where the solution of the hyperbolic problem
is singular. This decomposition of the film into an outer region, where the solution can be
found using characteristics, and inner regions corresponding to shocks or localised ‘puddles’
enables us to make the following general statements about flow on any curved substrate.
1. The local behaviour near any shock is given by the quasi-steady problem (52). The shock

moves according to the Rankine-Hugoniot condition (42) for one-dimensional flow or
(89) in two dimensions.

2. After a finite time, capillary-static puddles form at local maxima of the substrate curvature.
If this maximum occurs on a line, the puddle has width of order ε1/5a and thickness or
order ε4/5a. At a point maximum, a puddle forms with typical radius ε1/6a and thickness
ε2/3a. The leading-order puddle shapes are given by (68) and (99), respectively.

It is worth making a constrast between our approach and that adopted by Roy et al. [23].
They derive a governing equation that includes some higher-order corrections neglected in
our leading-order equation (31). The extra terms include spatial derivatives that smooth out
any singularities developed by the underlying hyperbolic problem (31). Thus their model
equation may be solved numerically throughout the fluid domain. This pragmatic approach
allows interesting nontrivial problems to be solved relatively easily, but does not distinguish
the generic structures described above. Furthermore, it is asymptotically inconsistent. When
the correction terms serve to smooth out singularities in the leading-order solution, they are
having a leading-order effect. If this occurs, the asymptotic expansions used to derive the
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equation in the first place have become disordered, and there is no guarantee that the correct
local behaviour is obtained simply by including further terms in the expansion.2 Instead, inner
expansions, in which different dominant balances prevail, should be constructed at such points
of nonuniformity. This is the approach we follow in Sections 4.2 and 4.3.

Our general theory was illustrated first by considering one-dimensional flow on a torus.
We found that, depending on the shape of the torus and whether the flow was on the inside
or the outside, both shocks and puddles could be observed. Our second illustrative example
concerned flow inside a moving axisymmetric substrate. This enabled us to identify the three
parameter regimes for the substrate velocity under which (i) the film thickness responds only
to substrate motion and surface tension is negligible; (ii) surface-tension-driven motion and
substrate-driven motion of the film balance; (iii) surface-tension-driven flow dominates.

Much analysis remains to be performed on the equations derived in this paper. It would
be of great interest to use the two-dimensional shock propagation theory of Section 6.2 to
examine the stability of the plane shock waves found in Section 4.2 to spanwise disturbances.
The analyses of Troian et al. [25] and of Bertozzi and Brenner [31] for gravity-driven flow on
a flat substrate, suggest that the shocks may be susceptible to a fingering instability, at least
in the limit where the film thickness ahead of the shock tends to zero. Kalliadasis and Homsy
[32], however, included substrate topography and found that the corresponding capillary ridge
was surprisingly stable.

Furthermore, it remains to perform a local analysis at a saddle point of the substrate curva-
ture, as carried out in Section 6.3 for a maximum. At such a point, :1 and :2 take different
signs, but the outer solution still predicts blow-up so long as :1 + :2 > 0. Such an analysis
is complicated by the fact that the ‘puddle’ is no longer bounded, and because real solutions
of (97, 98) in the form (99) do not, in general, exist.
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Appendix A. Arbitrary substrate motion

In general we cannot assume that our coordinate system, which is chosen to parametrise lines of curvature of
the substrate surface for all time, remains fixed in the evolving substrate. The integrated conservation-of-mass
equation (11) applies in any case, since its derivation relies only on continuity of normal velocity. However, the
nondimensionalisation ansatz (7) must be modified to

µi = σL

µa

(
Ca

a

L
Ui + ε2ũ′

i

)
, i = 1, 2, (A1)

where Ui is the substrate velocity, made dimensionless with U .
With this new definition of ũ, the Stokes equations and boundary conditions (14–19) are preserved. Hence the

flux components, scaled with εσL2/µa are found to be

Q1 = Ca
a

L
(U1 − v1)a2

(
h − εL

a

κh2

2

)
− ε2 a2

a1

∂p

∂x1

h3

3
+ O

(
ε4,

ε3L

a
, ε2 Ca

a

L

)
, (A2a)
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Q2 = Ca
a

L
(U2 − v2)a1

(
h − εL

a

κh2

2

)
− ε2 a1

a2

∂p

∂x2

h3

3
+ O

(
ε4,

ε3L

a
, ε2 Ca

a

L

)
. (A2b)

Now we transform to coordinates (ξ1, ξ2; τ) that are fixed in the substrate. Put

rc(x1, x2; t) ≡ ρc(ξ1, ξ2; τ). (A3)

Using the chain rule, we see that

∂ρc

∂τ
= U1e1 + U2e2 + v3n =

(
v1 + a1

∂x1

∂τ

)
e1 +

(
v2 + a2

∂x2

∂τ

)
e2 + v3n,

i.e.,

∂x1

∂τ
= U1 − v1

a1
,

∂x2

∂τ
= U1 − v2

a2
. (A4)

Also,

a1a2 = ∂(ξ1, ξ2)

∂(x1, x2)
J, (A5)

where

Jdξ1dξ2 =
∣∣∣∣ ∂ρc

∂ξ1
∧ ∂ρc

∂ξ2

∣∣∣∣ dξ1dξ2, (A6)

is the element of area in the new coordinate system.
Combining (A4) and (A5), we obtain the transport theorem relating the two frames:

1

J

∂

∂τ
(J3) = 1

a1a2

∂

∂t
(a1a23) + ∇s ·

[
3

(
U1 − v1

U2 − v2

)]
. (A7)

Using this identity to transform (11) to the new frame, we find that the invariant form suggested by (22) is correct
for arbitrary substrate motions:

1

J

∂

∂τ
(Jh) + ∇s ·

(
h3

3
∇sK

)
= O

(
ε2,

εL

a
, Ca

a

L

)
. (A8)

Here, recall that the time-derivative must be taken in a frame fixed in the moving substrate.

Notes

1I am grateful to Professor John King for pointing this out.
2Bearing in mind that asymptotic series do not, in general, converge, it is more often the case that fewer terms can
safely be included in an asymptotic expansion as a point of nonuniformity is approached.
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